NAME: KEY

Cliff Problems

1. A ball rolls off the edge of a table. It has an initial horizontal velocity of 3 m/s and is in the air for 0.75 seconds before hitting the floor. Y= -2.81 m (so height was a. How high is the table? Y= fat + Vy:t $V_x = 3$ $Y = \frac{1}{2}(-10)(.75) + (0)(.75)$ $V_{q} = O m/s$ How far away (horizontally) from the edge of the table does the ball land? t = 0.75 s $X = V_{x}t$ X = 2.25 mX = (3)(.75)What are the horizontal and vertical components of the ball's velocity when it lands? c. Vy=at +Vy: $V_x = 3 m_s !$ Vy=(-10)(.75)+0 / Vy=-(it doesn't change) d. How fast is the ball going when it lands? V= 9+ 56.25 $V^{2} = V_{x}^{2} + V_{y}^{2}$ $v^2 = 65.25$ $y^{2} = (3)^{2} + (-7.5)$ The Coyote is chasing the Road Runner when the Road Runner suddenly stops at the edge of a 2. convenient cliff. The Coyote, traveling with a speed of 15 m/s, does not stop and goes flying off the edge of the cliff, which is 100 meters high. $= -100 = -5t^2$ a. How long is the Coyote in the air? $V_{x} = 15 \text{ M}_{s}$ $Y = \frac{1}{2}at^{2} + V_{g}t$ $f_{t}^{2} = 20$ (t= 4.47 $-100 = \frac{1}{2}(-10)t^{2} + (0)t$ Vy: = 0 m/5 Q = ~ 10 "/2." Where does the Coyote land? $\chi = V_x t$ Y = -100 mx = 67.1 mx = (15)(4,47)What are the horizontal and vertical components of the Coyote's velocity when he lands? c. $|V_{\chi} = 15 \text{ m/s}| \notin V_{y} = \alpha t + V_{y}$ $V_{y} = (-10)(4.47) + 0$ Vy =-44.7 M/S

Cliff Problems

d. How fast is the Coyote going when he lands? $V^{2} = V_{x}^{2} + V_{y}^{2}$ $V^{2} = (15)^{2} + (-444.7)^{2}$ V = 47.2 M/s3. A car full of bad guys goes off the edge of a cliff. If the cliff was 75 meters high, and the car landed 60 meters away from the edge of the cliff, calculate the following: a. The total time the car was in the air. Y = -75M $Y = \frac{1}{2}at^{2} + V_{y}; t$ X = 60M $-75 = \frac{1}{2}(-10)t^{2} + (0)t$ T = 3.87 s

 $a = -10^{m/s^{2}}$ $b_{0} = 0^{m/s}$ $V_{y_{i}} = 0^{m/s}$

c. The final velocity of the car just as it hits the ground. (Give the components.)

$$V_{\rm X} = 15.5 \text{ m/s}$$

 $V_{\rm y} = at + V_{\rm y};$
 $V_{\rm y} = (-10)(3.87) + 0$ $V_{\rm y} = -38.7 \text{ m/s}$

d. The final speed of the car just as it hits the ground.

$$V^{2} = V_{x}^{2} + V_{y}^{2}$$

 $V^{2} = (15.5)^{2} + (-38.7)^{2}$
 $V = 41.7 m/s$

Answers:

1. a) 2.81 m	b) 2.25 m	c) $v_x = 3 \text{ m/s } \& v_y = -7.5 \text{ m/s}$	d) 8.1 m/s
2. a) 4.47 s	b) 67.1 m	c) $v_x = 15 \text{ m/s } \& v_y = -44.7 \text{ m/s}$	d) 47.2 m/s
3. a) 3.87 s	b) $v_x = 15.5 \text{ m/s } \& v_y = 0 \text{ m/s}$	c) $v_x = 15.5 \text{ m/s } \& v_y = -38.7 \text{ m/s}$	d) 41.7 m/s

NAME: